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Abstract
Analyse discrete sampling theories in the reproducing kernel Hilbert space are applied here to whole-sale electricity

market forecasting problem. We consider the optimal approximation of any function be longing to the kernel across pricing
nodes and hours via a sampling method. Then, a necessary and sufficient condition to perfectly reconstruct the function in the
corresponding reproducing kernel Hilbert space of function is investigated. The key idea of our work is adopting the reproducing
kernel Hilbert space corresponding to the Gramian matrix of the additive tensor kernel and considering the orthogonal projector
by the kernel functions. We also give numerical examples, using the sampling theorem, to confirm the behavior of the proposed
method.
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1. Introduction

Electricity price forecasting has become an important area of research globally since the introduction
of the deregulated whole-sale electricity markets. In particular, when compared with other commodities,
electricity trade displays a set of attributes that are quite uncommon: constant balance between production
and consumption [22]; dependence of the consumption on the time, e.g. hour of the day, day of the week, and
time of the year; load and generation that are influenced by external weather conditions [25]; and influence
of neighboring markets [14]. Due to these characteristics, the dynamics of competitive electricity markets,
electricity price forecasting has become a very valuable tool for all market participants. Producers and
consumers can use prediction information to adjust their production schedule and select the best bidding
strategy to maximize their respective benefits.
Based on the needs of the energy market, a variety of approaches for electricity price forecasting have been
proposed in the last decades, among them, models based on simulation of power system equipment and
related cost information [3], game-theory based models which focus on the impact of bidder strategic be-
havior on electricity prices [26], models based on stochastic modeling of finance [21], regression models [5]
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and artificial intelligence models [15, 13, 11, 12].
In recent years, reproducing kernel Hilbert spaces have been used to solve all kinds of problems in mechanics,
astronomy, economical theory, chemical physics, and electrostatics [1, 8, 9, 10]. They have become popular
since it is almost universally agreed in the forecasting literature that no single method is best in every situ-
ation [16, 24]. Kernel-based function estimation can be also seen from a Bayesian view point. Reproducing
kernel Hilbert spaces and linear minimum mean square error function estimators coincide when the perti-
nent covariance matrix equals the kernel Gram matrix. This equivalence has been leveraged in the context
of field estimation, where spatial linear minimum mean square error estimation referred to as Kriging, is
tantamount to two-dimensional reproducing kernel Hilbert spaces interpolation [6]. Finally, reproducing
kernel Hilbert spaces based function estimators can linked with sampling processes obtained upon defining
their tensor kernels [17, 18].
Some recent work uses multiple kernels to build prediction models for electricity load forecasting. For exam-
ple, in [2], Gaussian kernels with different parameters are applied to learn peak power consumption. In [7],
different types of kernels are used for different features and a multi-task learning algorithm is proposed and
applied on low level load consumption data to improve the aggregated load forecasting accuracy. However,
all of the existing methods rely on a fixed set of coefficients for the kernels, implicitly assuming that all the
kernels are equally important for forecasting, which is suboptimal in real world applications.
The purpose of this paper is to introduce an alternative necessary and sufficient condition formula of the
kernel-induced sampling theorem specialized for casting electricity price forecasting with uniform sampling
on the basis of the theory of Laurent operators by which the difficulty of the inverse of the infinite dimen-
sional Gramian matrix is resolved. Based on the derived results, another proof of the sampling theorem in
linear canonical transform domain by the reproducing kernel Hilbert spaces is given. A systematic method-
ology for judiciously selecting kernels over space and time is the first contribution of this paper. We also
investigate the optimal approximation of any band-limited functions in linear canonical transform domain
from infinite sampling points associated with results of reproducing kernel Hilbert spaces.
The paper outline is as follows. In Section 2, we give some mathematical definitions about the reproducing
kernel Hilbert spaces. Electricity market forecasting is formulated in Section 3, where the novel approach
is presented. In Section 4, we will study the optimal approximation by orthogonal projection. In Section
5, we discuss the necessary and sufficient condition to perfectly recover the function in the corresponding
reproducing kernel Hilbert space.

2. Construction of reproducing kernel Hilbert spaces

In this section, we prepare some mathematical tools concerned with the theory of reproducing kernel
Hilbert spaces.

Definition 2.1. Let X be a nonempty set. A function k : X× X −→ R is called a kernel function if there
exists a Hilbert space H with an inner product ⟨., .⟩H and a map φ : X −→ X such that for any x and x

′ in
the space X,

k(x, x ′
) = ⟨φ(x),φ(x

′
)⟩H.

Here φ is called a feature map, which transforms the data from the input space X to a feature spce H, and
can be highly complex and even infinite-dimensional.

A function k : X× X −→ R is non-negative definite if for any finite subset {x1, x2, . . . , xℓ, . . . } chosen
from X, the Gram matrix (or kernel matrix) K = {k(xi, xj)}∞i,j=1 is symmetric and non-negative definite,ie,
for any real numbers a1,a2, . . . ,aℓ, . . . ,

∞∑
i=1

∞∑
j=1

aiajk(xi, xj) ⩾ 0.
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Any kernel function k is clearly symmetric and we have
∞∑
i=1

∞∑
j=1

aiajk(xi, xj) =
∞∑
i=1

∞∑
j=1

⟨aiφ(xi),ajφ(xj)⟩H = ∥
∞∑
i=1

aiφ(xi)∥2
H ⩾ 0.

Therefore all kernel functions are non-negative definite.

Definition 2.2. Let H be a Hilbert space of real-valued functions defined on a nonempty set X. A function
k : X×X −→ R is called a reproducing kernel of H, and H is a reproducing kernel Hilbert space on X, if the
following conditions are satisfied:
For any x ∈ X, kx(.) = k(., x) as a function on X belongs to H.
The reproducing property: For any x ∈ X and any f ∈ H, ⟨f(.),k(., x)⟩H = f(x). The reproducing property
states that the evaluation of f at x can be expressed as an inner product in the feature space. By appling
the property, we have, for any x, x ′ ∈ X

k(x, x ′
) = ⟨k(., x),k(., x ′

)⟩H.

Definition 2.3. Let H1 and H2 be Hilbert spaces. The Schatten product of g ∈ H2 and h ∈ H1 is defined by

(g⊗ h)f = ⟨f,h⟩H1g, f ∈ H1.

Note that (g⊗ h) is a linear operator from H1 onto H2. It is easy to show that the following relations hold
for h, v ∈ H1, g,u ∈ H2,

(h⊗ g)∗ = (g⊗ h), (h⊗ g)(u⊗ v) = ⟨u,g⟩H2(h⊗ v),

where the superscript ∗ denotes the adjoint operator.

3. Problem formulation

Consider a whole-sale electricity market over a set S of N commercial pricing nodes indexed by s. In
a day-ahead market, locational marginal prices correspond to the cost of electricity at each node and over
one-hour periods for the following day [19]. Viewing market forecasting as an inference problem, hourly
locational marginal prices are the target variables. Energy markets may change significantly due to lasting
transmission and generation outages, or shifs in oil or gas markets. That is why the market is considered
to be stationary only over the T most recent time periods, which together with the sought next 24 hours
comprise the set T . The market could be then thought of as a function Z : S× T −→ R to be inferred.
It is postulated that the price at node s time t denoted by Z(s, t) belongs to the function space

P =
{
z(s, t) =

∑
s
′∈S,t ′∈T

K⊙((s, t), (s
′ , t ′

))as
′ ,t ′ : as

′ ,t ′ ∈ R
}

, (3.1)

defined by K⊙ : (S× T)× (S× T) −→ R. When K⊙ is a symmetric positive definite function, the function
space P becomes a reproducing kernel Hilbert space equipped with a finite norm

∥Z∥2
HK⊙

:=
∑

s,s ′∈S

∑
t,t ′∈T

K⊙((s, t), (s
′ , t ′

))as,tas
′ ,t ′ . (3.2)

When K⊙ is additionally selected as the additive tensor kernel [20], then

K⊙((s, t), (s
′ , t ′

)) := λKs(s, s
′
) + (1− λ)Kt(t, t

′
), 0 ⩽ λ ⩽ 1. (3.3)
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where KS : (S× S) −→ R and KT : (T × T) −→ R are kernels over nodes and hours, respectively; then every
function in P can be written as

P =
{
z(s, t) = λf(s) + (1− λ)g(t) : f ∈ HKS

, g ∈ HKT
, 0 ⩽ λ ⩽ 1

}
, (3.4)

where HKs
and HKt

are the reproducing kernel Hilbert spaces defined accordingly by KS and KT , respectively
[4]. In both (3.3) and (3.4), the extra coefficient λ needs to be determined.
What makes us more interested is the additive tensor kernel. The reason is that very tiny and large values
can be produced with the productive tensor kernel, which leads to the Gram matrix closed to representation
matrix in practise.

4. Kernel specific generalization for electricity market model

In this section, we concentrate on the reproducing kernel Hilbert space HK⊙ corresponding to some re-
producing kernel K⊙ as a class of function o which the target functions belong. According to the reproducing
property and (3.4), we have

z(sr, tr) = λf(sr) + (1− λ)g(tr) = λ⟨f(.),KS(., sr)⟩HKS
+ (1− λ)⟨g(.),KT (., tr)⟩HKT

(4.1)

is obtained, where S maps an element of HKS
onto R∞ and T maps an element of HKT

onto R∞. Let ei be
the unit vector in R∞ with only the i-th component being unity and let

Z = [z(s1, t1), z(s2, t2), . . . , z(sℓ, tℓ), . . . ]T ∈ R∞
with T denoting the transposition operator. Then, applying the Schatten product to equation (4.1) yields

Z = λ(

∞∑
i=1

[ei ⊗KS(., si)])f(.) + (1− λ)(

∞∑
i=1

[ei ⊗KT (., ti)])g(.). (4.2)

For a convenience of description, we write

A = (

∞∑
i=1

[ei ⊗KS(., si)]), B = (

∞∑
i=1

[ei ⊗KT (., ti)]). (4.3)

A is a linear operator defined by KS and B is a linear operator defined by KT . Then, we have

Z = λAf(.) + (1− λ)Bg(.). (4.4)

which represents the sampling process of f(.) ∈ HKS
and g(.) ∈ HKT

with the sampling point S and T ,
respectively. Therefore,function reconstruction process can be regarded as an inversion problem for (4.4).
Let Φ be a closed linear subspace in HKS

, spanned by the basis functions {KS(., si) : i ∈ N} and Ψ be a
closed linear subspace in HKT

, spanned by the basis functions {KT (., ti) : i ∈ N}, i.e.,

Φ = span{KS(., si) : i ∈ N}, Ψ = span{KT (., ti) : i ∈ N}, (4.5)

then Φ⊥ = N(A) and Ψ⊥ = N(B), where N(A) and N(B) denoted the null space of A and B, respectively.
Any function f(.) ∈ Ψ and g(.) ∈ Ψ can be represented by

f(.) =
∞∑
i=1

αiKS(., si), g(.) =
∞∑
i=1

βiKT (., ti),
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with coefficients αi, βi ∈ R. For any z(., .) = λf(.) + (1− λ)g(.) ∈ Φ+Ψ,

∥z(., .)∥2
HK⊙

= ⟨
∞∑
i=1

γiK⊙((., .), (si, ti)),
∞∑
j=1

γjK⊙((., .), (sj, tj))⟩HK⊙

=

∞∑
i=1

∞∑
j=1

γiγj⟨K⊙((., .), (si, ti)),K⊙((., .), (sj, tj))⟩HK⊙

=

∞∑
i=1

∞∑
j=1

γiγjK⊙((si, ti), (sj, tj))

= λ

∞∑
i=1

∞∑
j=1

αiαjKS(si, sj) + (1− λ)

∞∑
i=1

∞∑
j=1

βiβjKT (ti, tj)

= λαTDα+ (1− λ)βTGβ < ∞,

holds, where α = [α1,α2, . . . ,αℓ, . . . ]T ∈ R∞, β = [β1,β2, . . . ,βℓ, . . . ]T ∈ R∞, D =
(
KS(si, sj)

)
∈ R∞×∞

and G =
(
KT (ti, tj)

)
∈ R∞×∞ denotes the Gramian matrix of kernels KS and KT with sampling points

S, T , respectively. we intend to use Φ and Ψ as linear subspaces to which a reconstructed functions belongs.
Therefore, since Φ and Ψ are closed, then

Hα = {α ∈ R∞ : αTDα < ∞}, Hβ = {β ∈ R∞ : βTDβ < ∞}, (4.6)

are Hilbert spaces which are homeomorphic with Φ and Ψ, respectively.
It is easy o show that D and G are also reproducing kernels [23]. Thus D and G have the unique corresponding
reproducing kernel Hilbert spaces by HD and HG, respectively. Since HD and HG are complete and closed,
the exist symmetric and non-negative matrixes M and N that specifies the metric of HD and HG. Thus,
HD and HG are characterised as

HD = {d ∈ R∞ : dTMd < ∞}, HG = {g ∈ R∞ : gTNg < ∞}, (4.7)

According to the reproducing property,

Dei ∈ HD, Gei ∈ HG,

holds for any i ∈ N, which implies that each column of D belongs to HD and each column of G belongs to
HG, therefore

dk = ⟨d,Dek⟩HD
= eTkDMd, gk = ⟨g,Gek⟩HG

= eTkGNg, (4.8)

for any d = [d1,d2, . . . ,dℓ, . . . ]T ∈ HD and g = [g1,g2, . . . ,gℓ, . . . ]T ∈ HG. The summation premultiplied
by ek, with respect to k produces

d = DMd, g = GNg, (4.9)

for any d ∈ HD, g ∈ HG. Therefore, since Dei ∈ HD and Gei ∈ HG, then

Dei = DMDei, Gei = GNGei,

hold for any i ∈ N and the summation postmultiplied by eTi , with respect to i yields

D = DMD, G = GNG.

The last equation implies that M and N are 1-inverse of D and G, respectively. When D and G are
Matrixoid, D = M−1 and G = N−1.
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5. Optimal approximation by orthogonal projection

In this section, we discuss the orthogonal projection of the function onto the closed linear subspace
spanned by the basis functions corresponding to sampling points. Firstly, it is easy to show that the
following lemma and theorem can be obtained by a similar proof as proposed in [23].
Lemma 5.1. D and G are closed linear operators from Hα onto HD and Hβ onto HG, respectively.
Theorem 5.2. Let A = (

∑∞
i=1[ei ⊗ KS(., si)]) and B = (

∑∞
i=1[ei ⊗ KT (., ti)]), then A ∈ L(HKS

,HD) and
B ∈ L(HKT

,HG), where L(HKS
,HD) denotes the set of bounded linear operators from HKS

onto HD and
L(HKT

,HG) denotes the set of bounded linear operators from HKT
onto HG

According to Theorem 5.2, it immediately follows that:
A∗ ∈ L(HD,HKS

), B∗ ∈ L(HG,HKT
),

A∗A ∈ L(HKS
,HKS

), B∗B ∈ L(HKT
,HKT

).
Now, we obtain main theorem of this paper as follows.
Theorem 5.3. P = P1 + P2 is the orthogonal projector onto the closed linear subspace Φ+Ψ in HKS

+HKT
,

where P1 = A∗A, P2 = B∗B and P(h1 + h2) = P1h1 + P2h2.
Proof. Let f(s) =

∑∞
i=1 αiKS(s, si) and g(t) =

∑∞
i=1 βiKT (t, ti) be arbitrary functions in Φ and Ψ, respec-

tively. Then
Pz(s, t) = P(λf(s) + (1− λ)g(t)) = λP1f(s) + (1− λ)P2g(t)

= λA∗Af(s) + (1− λ)B∗Bg(t) = λA∗Dα+ (1− λ)B∗Gβ

= λ
( ∞∑

i=1
KS(s, si)⊗ ei

)
Dα+ (1− λ)

( ∞∑
i=1

KT (t, ti)⊗ ei

)
Gβ

= λ

∞∑
i=1

αTDMeiKS(s, si) + (1− λ)

∞∑
i=1

βTGNeiKT (t, ti)

= λαTDMK1 + (1− λ)βTGNK2,
where

K1 =

∞∑
i=1

eiKS(s, si) = [KS(s, s1), . . . ,KS(s, sℓ), . . . ]T ∈ R∞

K2 =

∞∑
i=1

eiKT (t, ti) = [KT (t, t1), . . . ,KT (t, tℓ), . . . ]T ∈ R∞.

Since A ∈ L(HKS
,HD) and B ∈ L(HKT

,HG) such that KS(., s) ∈ HKS
for any s ∈ S and KT (., t) ∈ HKT

for
any t ∈ T , then

AKS(., s) =
( ∞∑

i=1
[ei ⊗KS(s, si)]

)
KS(., s) = K1 ∈ HD

BKT (., t) =
( ∞∑

i=1
[ei ⊗KT (t, ti)]

)
KT (., t) = K2 ∈ HG.

are followed with any fixed s ∈ S and t ∈ T . Thus, from (4.9)

Pz(s, t) = λαTDMK1 + (1− λ)βTGNK2

= λ

∞∑
i=1

αiKS(s, si) + (1− λ)

∞∑
i=1

βiKT (t, ti)

= λf(s) + (1− λ)g(t) = z(s, t),
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are obtained for any s ∈ S and t ∈ T . On the other hand, for any f(s) ∈ Φ⊥ and g(t) ∈ Ψ⊥,

P1f(s) = 0, P2g(t) = 0,

therefore, Pz(s, t) = 0 trivially holds for any s ∈ S and t ∈ T . Thus, we know that P = P1 +P2 = A∗A+B∗B
is the orthogonal projector on the closed linear subspace Φ+Ψ. This concludes the proof.

From the definition of P, the closed form of P is written as,

Pz(s, t) = P
(
λf(.) + (1− λ)g(.)

)
=

(
λP1f(.) + (1− λ)P2g(.)

)
= λA∗Af(.) + (1− λ)B∗Bg(.)

= λ
( ∞∑

j=1
[KS(., sj)⊗ ej]

)( ∞∑
i=1

[ei ⊗KS(., si)]
)
f(.)

+ (1− λ)
( ∞∑

j=1
[KT (., tj)⊗ ej]

)( ∞∑
i=1

[ei ⊗KT (., ti)]
)
g(.)

= λ
( ∞∑

i=1

∞∑
j=1

Mi,j[KS(., si)⊗KS(., sj)]
)
f(.)

+ (1− λ)
( ∞∑

i=1

∞∑
j=1

Ni,j[KT (., ti)⊗KT (., tj)]
)
g(.)

= λ

∞∑
i=1

∞∑
j=1

f(sj)Mi,jKS(., sj) + (1− λ)

∞∑
i=1

∞∑
j=1

g(tj)Ni,jKT (., tj).

Now, we obtain a necessary and sufficient condition for a reproducing kernel and a set of sampling points
to perfectly reconstruct any function in the corresponding reproducing kernel Hilbert space.

Theorem 5.4. HKS
= Φ and HKT

= Ψ if and only if

K⊙
(
(s, t), (s, t)

)
= λ

∞∑
i=1

∞∑
j=1

KS(s, sj)Mi,jKS(s, si)

= (1− λ)

∞∑
i=1

∞∑
j=1

KT (t, tj)Ni,jKT (t, ti),
(5.1)

holds for any s ∈ S and t ∈ T .

Proof. Since KS(., s) ∈ HKS
and KT (., t) ∈ HKT

for any s ∈ S and t ∈ T , so, if HKS
= Φ and HKT

= Ψ holds
, then

KS(., s) − P1KS(., s) = 0, KT (., t) − P2KT (., t) = 0. (5.2)

Thus

K⊙
(
(., .), (s, t)

)
= PK⊙

(
(., .), (s, t)

)
= λP1KS(., s) + (1− λ)P2KT (., t)

= λ

∞∑
i=1

∞∑
j=1

KS(s, sj)Mi,jKS(., si)

+ (1− λ)

∞∑
i=1

∞∑
j=1

KT (t, tj)Ni,jKT (., ti),
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must hold for any s ∈ S and t ∈ T at least. So (5.1) holds. On the other hand, if assume that (5.2) holds,
then

z(s, t) = λf(s) + (1− λ)g(t)

= λ⟨f(.),KS(., s)⟩HKS
+ (1− λ)⟨g(.),KT (., t)⟩HKT

= λ⟨f(.),P1KS(., s)⟩HKS
+ (1− λ)⟨g(.),P2KT (., t)⟩HKT

= λ⟨f(.),P∗
1KS(., s)⟩HKS

+ (1− λ)⟨g(.),P∗
2KT (., t)⟩HKT

= λ⟨P1f(.),KS(., s)⟩HKS
+ (1− λ)⟨P2g(.),KT (., t)⟩HKT

= λP1f(s) + (1− λ)P2g(t) =
(
Pλf(s) + (1− λ)g(t)

)
= Pz(s, t)

is obtained for f(.) ∈ HKS
and g(.) ∈ HKT

for any s ∈ S and t ∈ T , since P1 and P2 are orthogonal projection,
which implies HKS

= Φ and HKT
= Ψ. It is easy to show that (5.2) identical to

∥KS(., s) − P1KS(., s)∥2
HKS

= 0, ∥KT (., t) − P2KT (., t)∥2
HKT

= 0.

By applying the Pythagoren theorem and similar method to [23], the above equation can be written as

∥KS(., s) − P1KS(., s)∥2
HKS

= ∥KS(., s)∥2
HKS

− ∥P1KS(., s)∥2
HKS

= KS(s, s) −
∞∑
i=1

∞∑
j=1

KS(s, sj)Mi,jKS(s, si) = 0,

∥KT (., t) − P2KT (., t)∥2
HKT

= ∥KT (., t)∥2
HKT

− ∥P2KT (., t)∥2
HKT

= Kt(t, t) −
∞∑
i=1

∞∑
j=1

KT (t, tj)Ni,jKT (t, ti) = 0.

Therefore

KS(s, s) =
∞∑
i=1

∞∑
j=1

KS(s, sj)Mi,jKS(s, si),

KT (t, t) =
∞∑
i=1

∞∑
j=1

KT (t, tj)Ni,jKT (t, ti).
(5.3)

Now, by equation
K⊙

(
(s, t), (s, t)

)
= λKS(s, s) + (1− λ)KT (t, t)

and equation (5.3), we conclude that the equation (5.1) holds.

Example 5.5. We will applying the derived results in previous relations to the sampling theories associated
with a sinc function which can be written as

KS(s1, s2) =
sinπ(s1 − s2)

π(s1 − s2)
, s1, s2 ∈ R,

KT (t1, t2) =
sinπ(t1 − t2)

π(t1 − t2)
, t1, t2 ∈ R.

It is trivial that
K⊙

(
(s, t), (s, t)

)
= λKS(s, s) + (1− λ)KT (t, t) = 1, ∀s, t ∈ R.

Furthermore, matrixes M and N are reduced to the identity operators. Then the right-hand side of (5.1)
reduces to
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λ

∞∑
i=1

∞∑
j=1

KS(s, i)Mi,jKS(s, j) + (1− λ)

∞∑
i=1

∞∑
j=1

KT (t, i)Ni,jKT (t, j)

= λ

∞∑
i=1

(sinπ(s− i)

π(s− i)

)2
+ (1− λ)

∞∑
i=1

(sinπ(t− i)

π(t− i)

)2

= λ

∞∑
i=1

((−1)isinπs
π(s− i)

)2
+ (1− λ)

∞∑
i=1

((−1)isinπt
π(t− i)

)2

= λ+ (1− λ) = 1.

Thus, it is concluded that (5.1) holds for any s, t ∈ R.

6. Conclusion

In this paper, we discussed discrete sampling theories for Electricity Market Forecasting model. We
reformulated a class of machine learning-based as a reproducing kernel Hilbert space and gave a closed-
form of the corresponding kernel functions, that is, the difference of ordinary sinc kernels. Moreover, we
discussed the kernel-induced sampling theorem for a translation-invariant reproducing kernel Hilbert space
corresponding to the additive tensor kernel and introduced an alternative and convenient necessary and
sufficient condition formula specialized for these cases.
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